Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo
نویسندگان
چکیده
BACKGROUND Biological applications of nanoparticles are rapidly increasing, which introduces new possibilities to improve the efficacy of radiotherapy. Here, we synthesized titanium peroxide nanoparticles (TiOxNPs) and investigated their efficacy as novel agents that can potently enhance the effects of radiation in the treatment of pancreatic cancer. METHODS TiOxNPs and polyacrylic acid-modified TiOxNPs (PAA-TiOxNPs) were synthesized from anatase-type titanium dioxide nanoparticles (TiO2NPs). The size and morphology of the PAA-TiOxNPs was evaluated using transmission electron microscopy and dynamic light scattering. The crystalline structures of the TiO2NPs and PAA-TiOxNPs with and without X-ray irradiation were analyzed using X-ray absorption. The ability of TiOxNPs and PAA-TiOxNPs to produce reactive oxygen species in response to X-ray irradiation was evaluated in a cell-free system and confirmed by flow cytometric analysis in vitro. DNA damage after X-ray exposure with or without PAA-TiOxNPs was assessed by immunohistochemical analysis of γ-H2AX foci formation in vitro and in vivo. Cytotoxicity was evaluated by a colony forming assay in vitro. Xenografts were prepared using human pancreatic cancer MIAPaCa-2 cells and used to evaluate the inhibition of tumor growth caused by X-ray exposure, PAA-TiOxNPs, and the combination of the two. RESULTS The core structures of the PAA-TiOxNPs were found to be of the anatase type. The TiOxNPs and PAA-TiOxNPs showed a distinct ability to produce hydroxyl radicals in response to X-ray irradiation in a dose- and concentration-dependent manner, whereas the TiO2NPs did not. At the highest concentration of TiOxNPs, the amount of hydroxyl radicals increased by >8.5-fold following treatment with 30 Gy of radiation. The absorption of PAA-TiOxNPs enhanced DNA damage and resulted in higher cytotoxicity in response to X-ray irradiation in vitro. The combination of the PAA-TiOxNPs and X-ray irradiation induced significantly stronger tumor growth inhibition compared to treatment with either PAA-TiOxNPs or X-ray alone (p < 0.05). No apparent toxicity or weight loss was observed for 43 days after irradiation. CONCLUSIONS TiOxNPs are potential agents for enhancing the effects of radiation on pancreatic cancer and act via hydroxyl radical production; owing to this ability, they can be used for pancreatic cancer therapy in the future.
منابع مشابه
CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملCytotoxic effect of pyocyanin on human pancreatic cancer cell line (Panc-1)
Objective(s): Pyocyanin, a blue-green pigment produced by Pseudomonas aeruginosa, interferes with host redox cycles, which can lead to generation of reactive oxygen species and progressive cellular oxidative damage. The aim of this study was to assess the influence of pyocyanin on human pancreatic cancer cell line.Materials and Methods: Polymerase Chain Reaction (PCR) was applied to confirm the...
متن کاملEffect of Antibiotics and/or Chemotherapy on Generation of Reactive Oxygen Intermediate by Neutrophils
Dear Editor, The O2-generating enzyme NADPH oxidase, plays a crucial role in host defense against microbial infection through the production of reactive oxygen species (ROS).1The multisubunit NADPH oxidase complex can be detected in vitro by the nitroblue tetrazolium test (NBT).2The NBT test is used for the diagnosis of chronic granulomatous disease.3 However, several factors, such as some cyto...
متن کاملThe role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro
Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...
متن کاملCritical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کامل